SADLER MATHEMATICS METHODS UNIT 1

WORKED SOLUTIONS

Chapter 2 Radian measure

Exercise 2A

Question 1

 $\frac{50}{360} \times 2 \times \pi \times 12.4$ $= 10.8 \,\mathrm{cm}$

Question 2

 $\frac{235}{360} \times 2 \times \pi \times 14.7$ $= 60.3 \,\mathrm{cm}$

Question 3

 $\frac{70}{360} \times 2 \times \pi \times 6.7$ $= 8.2 \,\mathrm{cm}$

Question 4

 $\frac{240}{360} \times 2 \times \pi \times 8$ $= \frac{32\pi}{3} \text{ cm}$

$$\frac{150}{360} \times 2 \times \pi \times 10$$
$$= \frac{25\pi}{3} \text{ cm}$$

Question 6

 $\frac{280}{360} \times 2 \times \pi \times 6$ $= \frac{28\pi}{3} \text{ cm}$

Question 7

 $\frac{1}{6} \times \pi \times 12^2$ $= 24\pi \text{ cm}^2$

Question 8

 $\frac{110}{360} \times \pi \times 6^2$ $= 11\pi \text{ cm}^2$

Question 9

$$\frac{2}{3} \times \pi \times 8^2$$
$$= \frac{128\pi}{3} \text{ cm}^2$$

 $\frac{155}{360} \times \pi \times 15.4^2$ $= 321 \,\mathrm{cm}^2$

Question 11

 $\frac{17.6}{2 \times \pi \times 12.3} \times \pi \times 12.3^2$ $= 108 \text{ cm}^2$

Question 12

 $\frac{(2 \times \pi \times 10 - 20)}{2 \times \pi \times 10} \times \pi \times 10^{2}$ $= 214 \text{ cm}^{2}$

Question 13

 $\frac{100}{360}\pi(15)^2 - \frac{1}{2}(15)^2\sin 100$ = 86 cm²

Question 14

Sector area : $\frac{16}{20\pi} \times \pi (10)^2 = 80 \text{ cm}^{22}$ Central angle : $\frac{16}{20\pi} \times 360 = 91.7^\circ$ Triangle area : $\frac{1}{2} \times 10^2 \times \sin 91.7^\circ = 50 \text{ cm}^2$ \therefore area of segment = $80 - 50 = 30 \text{ cm}^2$

Fraction of circle : $\frac{90}{100\pi} = \frac{9}{10\pi}$ Central angle : $\frac{9}{10\pi} \times 360^\circ = 103^\circ$ \therefore area of triangle : $\frac{1}{2} \times 10^2 \times \sin 103^\circ = 48.7 \text{ cm}^2$ Shaded area : $90 - 48.7 \approx 41 \text{ cm}^2$

Question 16

Triangle area : $\frac{1}{2} \times \sin 60^{\circ} \times 12^{2} = 36\sqrt{3}$ Sector area : $\frac{1}{2} \times \pi \times 12^{2} = 24\pi$ Shaded area : $24\pi - 36\sqrt{3} = 12(2\pi - 3\sqrt{3}) \text{ cm}^{2}$

Question 17

Sector area :
$$\frac{135}{360} \times \pi \times 6^2 = \frac{27\pi}{2}$$

Triangle area :
$$\frac{1}{2} \times 6^2 \times \sin 135^\circ = 9\sqrt{2}$$

Shaded area :
$$\frac{27\pi}{2} - 9\sqrt{2} = 9(\frac{3\pi}{2} - \sqrt{2}) \text{ cm}^2$$

Question 18

Segment area :
$$\frac{150}{360} \times \pi (10)^2 = \frac{125\pi}{3} \text{ cm}^2$$

Triangle area : $\frac{1}{2} \times 10^2 \times \sin 150^\circ = 25 \text{ cm}^2$
 \therefore Shaded area $= \frac{125\pi}{3} - 25 = 25(\frac{5\pi}{3} - 1) \text{ cm}^2$

a
$$\frac{112}{360} \times 2\pi \times 15.2 = 29.7 \text{ cm}$$

b
$$\frac{248}{360} \times 2\pi \times 15.2 = 65.8 \text{ cm}$$

Question 20

$$\frac{75}{360} \times 2\pi r = 24$$
$$r = \frac{24 \times 360}{75 \times 2\pi}$$
$$= 18.3 \text{ cm}$$

Question 21

 $\frac{50}{360} \times \pi \times 15^2 = 98.2 \text{ cm}^2$

Question 22

Sector area : $\frac{140}{360} \times \pi \times 18^2 = 395.8 \text{ cm}^2$ Triangle area : $\frac{1}{2} \times 18^2 \times \sin 140^\circ = 104.1 \text{ cm}^2$ Segment area : $395.8 - 104.1 \approx 292 \text{ cm}^2$

$$\frac{378}{\pi \times 12^2} = \frac{\theta}{360} \quad (\theta > 180^\circ)$$
$$\theta = \frac{378}{\pi \times 144} \times 360$$
$$= 301^\circ$$

Acute angle $= 59^{\circ}$

Question 24

$$\cos \theta = \frac{12^{2} + 12^{2} - 10^{2}}{2 \times 12 \times 12}$$

$$\theta = 49^{\circ}$$

Sector area : $\frac{49}{360} \times \pi \times 12^{2} = 61.6 \text{ cm}^{2}$
Triangle area : $\frac{1}{2} \times 12^{2} \times \sin 49^{\circ} = 54.3 \text{ cm}^{2}$
Segment area : $61.6 - 54.3 = 7.3 \text{ cm}^{2}$

Question 25

The hour hand would travel 15° in 30 minutes.

$$\frac{15}{360} \times 2 \times \pi \times 8 = \frac{2\pi}{3} \text{ cm}$$

The minute hand would travel 180° in 30 minutes.

 $\frac{1}{2} \times 2\pi \times 12 = 12\pi \text{ cm}$

3° = 180′(180 minutes) ∴ 180 nautical miles travelled

 $\frac{3}{360}$ × 2 π × 6350 = 332.485 km

180nm = 332.485 km $1 \text{ nm} = \frac{332.485}{180}$ = 1.85 km

Question 27

Major arc length becomes the circumference of the hat

 $\frac{240}{360} \times 2\pi \times 10 = \frac{40\pi}{3} = 41.89 \text{ cm}$ $2\pi r = \frac{40\pi}{3}$ $r = \frac{40\pi}{2\pi \times 3}$ $= 6\frac{2}{3} \text{ cm}$ $h^{2} = 10^{2} - (6\frac{2}{3})^{2}$ $= \frac{500}{9}$ $h = \frac{10\sqrt{5}}{3} \text{ cm}$

Exercise 2B

Question 1

Arc length = $3 \times \text{radius} \implies \theta = 3 \text{ rads}$

Question 2

Arc length = $1.5 \times \text{radius} \implies \theta = 1.5 \text{ rads}$

Question 3

Arc length = $5 \times \text{radius} \implies \theta = 5 \text{ rads}$

Question 4

Arc length = $2.5 \times \text{radius} \implies \theta = 2.5 \text{ rads}$

Question 5

Arc length = 4 x radius $\implies \theta = 4$ rads

Question 6

Arc length = $4 \times \text{radius} \implies \theta = 4 \text{ rads}$

Question 7

 $180^\circ = \pi$ radians $90^\circ = \frac{\pi}{2}$ radians

 $180^\circ = \pi$ radians $30^\circ = \frac{\pi}{6}$ radians

Question 9

 $180^\circ = \pi$ radians $150^\circ = \frac{5\pi}{6}$ radians

Question 10

 $180^\circ = \pi$ radians $135^\circ = \frac{3\pi}{4}$ radians

Question 11

 $180^\circ = \pi$ radians $5^\circ = \frac{\pi}{36}$ radians

Question 12

 $180^\circ = \pi$ radians $18^\circ = \frac{\pi}{10}$ radians

Question 13

 $180^\circ = \pi$ radians $80^\circ = \frac{4\pi}{9}$ radians

 $180^\circ = \pi$ radians $130^\circ = \frac{13\pi}{18}$ radians

Question 15

$$\frac{\pi}{4}$$
 radians = $\left(\frac{180}{4}\right)^\circ = 45^\circ$

Question 16

$$\frac{\pi}{3}$$
 radians = $\left(\frac{180}{3}\right)^\circ = 60^\circ$

Question 17

$$\frac{2\pi}{3}$$
 radians = $\left(\frac{2 \times 180}{3}\right)^\circ = 120^\circ$

Question 18

 π radians = 180°

Question 19

$$\frac{\pi}{12} \text{ radians} = \left(\frac{180}{12}\right)^\circ = 15^\circ$$

Question 20

$$\frac{\pi}{5}$$
 radians = $\left(\frac{180}{5}\right)^\circ = 36^\circ$

© Cengage Learning Australia Pty Ltd 2018

$$\frac{7\pi}{36} \text{ radians} = \left(\frac{7 \times 180}{36}\right)^\circ = 35^\circ$$

Question 22

$$\frac{7\pi}{18} \text{ radians} = \left(\frac{7 \times 180}{18}\right)^\circ = 70^\circ$$

Question 23

 $\frac{32\pi}{180}$ radians = 0.56 radians

Question 24

 $\frac{63\pi}{180}$ radians = 1.10 radians

Question 25

 $\frac{115\pi}{180}$ radians = 2.01 radians

Question 26

 $\frac{170\pi}{180}$ radians = 2.97 radians

Question 27

 $\frac{16\pi}{180}$ radians = 0.28 radians

 $\frac{84\pi}{180}$ radians = 1.47 radians

Question 29

 $\frac{104\pi}{180}$ radians = 1.82 radians

Question 30

 $\frac{26\pi}{180}$ radians = 0.45 radians

Question 31

 $1.5 \times \frac{180}{\pi} = 86^{\circ}$

Question 32

 $2.3 \times \frac{180}{\pi} = 132^{\circ}$

Question 33

 $1.4 \times \frac{180}{\pi} = 80^{\circ}$

Question 34

 $0.6 \times \frac{180}{\pi} = 34^{\circ}$

 $\frac{1}{\sqrt{2}}$

Question 36

 $\frac{1}{2}$

Question 37

 $-\frac{1}{\sqrt{2}}$

Question 38

1

Question 39

 $\frac{\sqrt{3}}{2}$

Question 40

 $\frac{1}{\sqrt{2}}$

Question 41

 $\frac{1}{\sqrt{2}}$

 $-\sqrt{3}$

Question 43

0

Question 44

Undefined

Question 45

 $-\frac{1}{2}$

Question 46

 $-\frac{1}{\sqrt{3}}$

Question 47

 $-\frac{\sqrt{3}}{2}$

Question 48

0

 $\frac{1}{2}$

Question 50

0

Question 51

0.84

Question 52

-0.42

Question 53

-0.75

Question 54

0.14

Question 55

0.83

Question 56

0.99

3.60

Question 58

0.75

Question 59

0.20 radians

Question 60

1.37 radians

Question 61

0.34 radians

Question 62

1.04 radians

a 3 revolutions/s = $3 \times 2\pi / s$

 $= 6\pi$ radians/s

b 15 revolutions/min

$$= \frac{1}{4}$$
 revolutions/s
$$= \frac{1}{4} \times 2\pi$$
 radians/s
$$= \frac{\pi}{2}$$
 radians/s

c 90°/s

$$= \frac{1}{4}$$
 revolutions/s
$$= \frac{1}{4} \times 2\pi$$
 radians/s
$$= \frac{\pi}{2}$$
 radians/s

а

 2π radians/min

=1 revolution/min **b** $\frac{3\pi}{4} \text{ radians/s} = \frac{3\pi}{4 \times 2\pi} \text{ revolutions/s}$ $= \frac{3}{8} \text{ revolutions/s}$ $= \frac{3}{8} \times 60 \text{ revolutions/minute}$ = 22.5 revolutions/minute **c** $\frac{\pi}{3} \text{ radians/s}$ $= \frac{\pi}{3 \times 2\pi} \text{ revolutions/s}$ $= \frac{1}{6} \text{ revolutions/minute}$ = 10 revolutions/minute

Question 65

$$\sin 1 = \frac{6}{x}$$
$$x = \frac{6}{\sin 1}$$
$$= 7.1 \text{ cm}$$

Question 66

$$\tan 1.2 = \frac{8}{x}$$
$$x = \frac{8}{\tan 1.2}$$
$$= 3.1 \text{ cm}$$

$$\sin 0.6 = \frac{h}{20}$$
$$h = 20 \times \sin 0.6$$
$$= 11.3$$
$$x^{2} = 11.3^{2} + 6^{2}$$
$$x = 12.8 \text{ cm}$$

Question 68

x	= 15
sin1.1	sin1.8
$r = 14 \times \sin 1.1$	
<i>λ</i> – —	1.8
=12.8	cm

Question 69

Supplementary angle : $\pi - 0.64 = 2.50$ $x^2 = 10^2 + 7^2 - 2 \times 7 \times 10 \times \cos 2.5$ x = 16.2 cm

Question 70

$$\cos x = \frac{6.1^2 + 5.0^2 - 7.2^2}{2 \times 6.1 \times 5.0}$$

x = 1.4 radians

a 15 minutes $=\frac{1}{4}$ revolutions 1 revolution $= 2\pi$ radians $\frac{1}{4} \times 2\pi = \frac{\pi}{2}$ radians **b** 40 minutes $=\frac{2}{3}$ revolutions $\frac{2}{3} \times 2\pi = \frac{4\pi}{3}$ radians **c** 50 minutes $=\frac{5}{6}$ revolutions $\frac{5}{6} \times 2\pi = \frac{5\pi}{3}$ radians **d** 55 minutes $=\frac{11}{3}$ revolutions

$$\frac{11}{12} \times 2\pi = \frac{11\pi}{6}$$
 radians

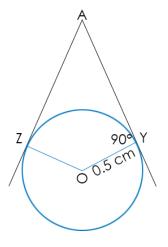
Question 72

100 grads =
$$90^\circ = \frac{\pi}{2}$$
 radians

a 50 grads = $\frac{\pi}{4}$ radians

b 75 grads =
$$\frac{3}{4} \times \frac{\pi}{2} = \frac{3\pi}{8}$$
 radians

c 10 grads
$$=\frac{1}{10} \times \frac{\pi}{2} = \frac{\pi}{20}$$
 radians


d 130 grads
$$=\frac{13}{10} \times \frac{\pi}{2} = \frac{13\pi}{20}$$
 radians

a Assume the pipe has a diameter of 1 cm, (radius 0.5 cm).

Points of contact Y and Z are tangent to pipe forming right angles.

We need to find the length of AY given $\angle OAY = 0.5$ radian.

$$\tan 0.5 = \frac{0.5}{AY}$$
$$AY = 0.5 \div \tan 0.5$$
$$= 0.915 \text{ cm}$$

Each marking should be made 0.915 cm along the guide.

b yes.

If
$$\angle BAC = \frac{\pi}{2}$$
 radians, $\angle OAY = \frac{\pi}{4}$ radians and consequently $\angle YOA = \frac{\pi}{4}$ radians.
 $\triangle OYA$ is then isosceles, with $OY = AY$.

The calibrations should then be placed 0.5 cm apart which is a simpler scale.

Exercise 2C

Question 1

 $l = r\theta$ $= 5 \times 0.8$ = 4 cm

Question 2

 $l = r\theta$ $= 10 \times 2.5$ = 25 cm

Question 3

 $l = r\theta$ = 7.8×(2 π -4.5) = 13.9 cm

Question 4

$$A = \frac{1}{2}r^{2}\theta$$
$$= \frac{1}{2} \times 4^{2} \times 1$$
$$= 8 \text{ cm}^{2}$$

Question 5

$$A = \frac{1}{2}r^{2}\theta$$
$$= \frac{1}{2} \times 6^{2} \times 2.5$$
$$= 45 \text{ cm}^{2}$$

$$A = \frac{1}{2}r^2\theta$$
$$= \frac{1}{2} \times 10^2 \times (2\pi - 4)$$
$$= 114 \text{ cm}^2$$

Question 7

$$A = \frac{1}{2}r^{2}(\theta - \sin \theta)$$
$$= \frac{1}{2} \times 59^{2} \times (1 - \sin 1)$$
$$= 276 \text{ cm}^{2}$$

Question 8

$$A = \frac{1}{2}r^{2}(\theta - \sin \theta)$$

= $\frac{1}{2} \times 5.1^{2} \times ((2\pi - 3.5) - \sin(2\pi - 3.5))$
= 31.6 cm²

Question 9

$$A = \frac{1}{2}r^{2}(\theta - \sin \theta)$$

= $\frac{1}{2} \times 7.5^{2} \times (2.2 - \sin 2.2)$
= 39.1 cm²

Question 10

 $l = r\theta$ $= 15 \times 1.2$ = 18 cm

© Cengage Learning Australia Pty Ltd 2018

a
$$A = \frac{1}{2}r^{2}\theta$$
$$= \frac{1}{2} \times 15^{2} \times 0.8$$
$$= 90 \text{ cm}^{2}$$

b
$$\pi(15)^2 - 90 = 617 \,\mathrm{cm}^2$$

Question 12

a
$$l = r\theta$$

= 8×1
= 8 cm

b
$$A = \frac{1}{2}r^{2}(\theta - \sin \theta)$$
$$= \frac{1}{2} \times 8^{2} \times (1 - \sin 1)$$
$$= 5.1 \text{ cm}^{2}$$

a
$$A = \frac{1}{2}r^{2}\theta$$

$$15 = \frac{1}{2} \times 5^{2} \times \theta$$

$$\theta = \frac{15}{12.5}$$

$$= 1.2 \text{ radians}$$

$$l = r\theta$$

$$= 1.2 \times 5$$

$$= 6 \text{ cm}$$
b
$$A = \frac{1}{2}r^{2}(\theta - \sin\theta)$$

$$= \frac{1}{2} \times 5^{2} \times (1.2 - \sin(1.2))$$

$$2 = 3.35 \text{ cm}^2$$

Question 14

 $l = r\theta$ 20 = 8 × 0 θ = 2.5 radians

$$A = \frac{1}{2}r^{2}\theta$$
$$= \frac{1}{2} \times 8^{2} \times 2.5$$
$$= 80 \text{ cm}^{2}$$

$$A = \frac{1}{2}r^{2}\theta$$

$$9 = \frac{1}{2} \times 6^{2} \times \theta$$

$$\theta = 0.5 \text{ radians}$$

$$A = \frac{1}{2}r^{2}(\theta - \sin \theta)$$

$$= \frac{1}{2} \times 6^{2} \times (0.5 - \sin(0.5))$$

$$= 0.37 \text{ cm}^{2}$$

Question 16

Area of sector OBC Area of sector OAD

$$A = \frac{1}{2}r^{2}\theta$$
$$= \frac{1}{2} \times 12^{2} \times 1.5$$
$$= 108 \text{ cm}^{2}$$
$$A = \frac{1}{2}r^{2}\theta$$
$$= \frac{1}{2} \times 6^{2} \times 1.5$$
$$= 27 \text{ cm}^{2}$$

 \therefore required area $108 - 27 = 81 \text{ cm}^2$

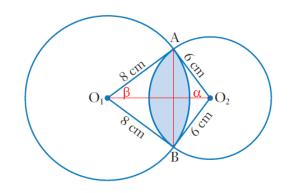
$$A = \frac{1}{2}r^{2}\theta$$
$$= \frac{1}{2} \times 9^{2} \times 3$$
$$= 121.5 \text{ cm}^{2}$$
$$A = \frac{1}{2}r^{2}\theta$$
$$= \frac{1}{2} \times 5^{2} \times 3$$
$$= 37.5 \text{ cm}^{2}$$

 \therefore required area 121.5 - 37.5 = 84 cm²

Question 18

The total shaded area is the sum of segments O_1AB and O_2AB .

In
$$\Delta O_1 A O_2$$
, $\angle O_1 A O_2 = 90^\circ$,
 $\tan \alpha = \frac{8}{6}$
 $\alpha = 0.9273$
 $\angle A O_2 B = 1.8456$
 $\angle A O_1 B = \pi - 1.8546 = 1.2870$
Segment $O_2 A B$
 $A = \frac{1}{2}r^2(\theta - \sin \theta)$


$$=\frac{1}{2}6^{2}(1.8546 - \sin(1.8456))$$
$$= 16.01 \,\mathrm{cm}^{2}$$

Segment O₁AB

$$A = \frac{1}{2}r^{2}(\theta - \sin \theta)$$

= $\frac{1}{2}8^{2}(1.2870 - \sin(1.2870))$
= 10.46 cm²

 \therefore required area 16.10-10.46 = 26.6 cm²

© Cengage Learning Australia Pty Ltd 2018

Total area = segment OAD + (sector OCB - sector OAD)

Sector ABCD

$$\frac{1}{2}8^2(0.8) - \frac{1}{2}5^2(0.8) = 15.6 \text{ cm}^2$$

Segment in OAD

 $\frac{1}{2}5^2(0.8 - \sin(0.8)) = 1.0 \text{ cm}^2$

Total area $= 16.6 \text{ cm}^2$

Question 20

Area of quadrilateral OACB: $0.5 \times 6 \times 8 \times 2 = 48 \text{ cm}^2$

 $\tan \angle AOC = \frac{8}{6}$ $\angle AOC = 0.93$

Area of sector OAB

$$A = \frac{1}{2} \times 6^2 \times (0.93 \times 2)$$
$$= 33.4 \text{ cm}^2$$

 \therefore required area : 48-33.4 = 14.6 cm²

Area of sector OABCD :
$$A = \frac{1}{2} \times 5^2 \times 2$$

= 25 cm²

Area of $\triangle OAD$: $A = \frac{1}{2} \times 5^2 \sin 2$ = 11.37 cm²

Area of segment cur off by chord BC : $A = \frac{1}{2}5^2(1-\sin 1)$ = 1.98 cm²

Required area = $25 - 11.37 - 1.98 = 11.65 \text{ cm}^2$

Question 22

a $l = r\theta$ = 75×0.8

= 60 cm

distance travelled : 120 cm

b $BC^2 = 75^2 + 75^2 + 2 \times 75 \times 75 \times \cos 0.8$ BC = 58.4 cm Difference of 1.6 cm

$$\cos B = \frac{50^2 + 70^2 - 40^2}{2 \times 50 \times 70}$$

$$\beta = 0.59$$

$$\angle AO_1B = 1.18$$

$$A = \frac{1}{2} \times 50^2 \times (1.18 - \sin(1.18))$$

$$= 309 \text{ mm}^2$$

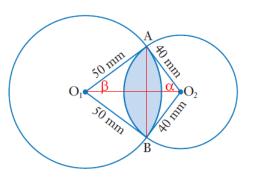
$$\cos \alpha = \frac{40^2 + 70^2 - 50^2}{2 \times 40 \times 70}$$

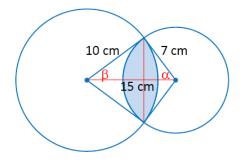
$$\alpha = 0.78$$

$$\angle AO_2B = 1.56$$

$$A = \frac{1}{2} \times 40^2 \times (1.56 - \sin(1.56))$$

$$= 448 \text{ mm}^2$$


Total Area : $319 + 448 = 767 \text{ mm}^2$ Area, to nearest $10 \text{ mm}^2 = 770 \text{ mm}^2$


Question 24

 $\cos \alpha = \frac{10^2 + 15^2 - 7^2}{2 \times 10 \times 15}$ $\alpha = 0.403$ $\cos \beta = \frac{7^2 + 15^2 - 10^2}{2 \times 7 \times 15}$ $\beta = 0.594$

Arc $1 = 10 \times (0.403 \times 2) = 8.06$ Arc $2 = 7 \times (0.594 \times 2) = 8.32$

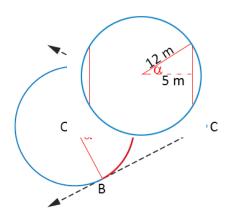
 \therefore perimeter = 16.4 cm

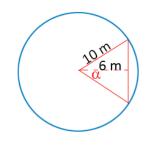
In $\triangle OAC$, $\angle OAC = 90^{\circ}$ (tangent-radius) $\cos \alpha = \frac{10}{22}$ $\alpha = 1.10$ Arc length AB = $10 \times 2.2 = 22 \text{ cm}$

Percentage of circumference

 $\frac{22}{2 \times \pi \times 10} \times 100 = 35\%$

Question 26


 $\cos \alpha = \frac{6}{10}$ $\alpha = 0.927$


Area of segment

 $\frac{1}{2} \times 10^{2} (1.854 - \sin(1.854))$ = 44.69 m² ∴ required area = $\pi \times 10^{2} - 44.69 = 269 \text{ m}^{2}$

Question 27

 $\cos \alpha = \frac{5}{12}$ $\alpha = 1.4$ Area of segment $\frac{1}{2} \times 12^2 \times (2.28 - \sin 2.28)$ = 109.5Area available to goat $\pi 12^2 - 2 \times 109.5 = 233 \text{ m}^2$

Distance between centres: 26 cm

Length of the belt connecting wheels (dotted length)

$$l^{2} = 26^{2} - 10^{2}$$
$$l = 24$$
$$\tan \beta = \frac{24}{10}$$
$$\beta = 1.176$$

6 cm 10 cm β 4 cm

Angle subtended by belt on the large wheel is $2\pi - 2 \times 1.176 = 3.93$ radians

Length of belt in contact with large wheel : $3.93 \times 16 = 62.90$ cm

$$\alpha = \frac{\pi}{2} - 1.176 = 0.395$$

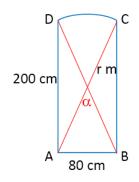
Angle subtended by belt on the small wheel:

$$2\pi - (\frac{\pi}{2} + 0.395) = 2.352$$

Length of belt in contact with small wheel
$$2.352 \times 6 = 14.11 \text{ cm}$$

∴ Total belt length 62.90+14.11+24×2 =125 cm

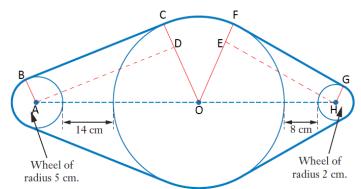
Radius of circular top


$$r^2 = 40^2 + 100^2$$

 $r = 107.7$ cm

$$\cos \alpha = \frac{11600 \times 2 - 80^2}{2 \times 11600}$$

 $\alpha = 0.761$


Area of segment at the top of the door

$$A = \frac{1}{2}r^{2}(\theta - \sin \theta)$$

= $\frac{1}{2} \times 11600 \times (0.761 - \sin(0.761))$
= 414 cm²

:. Area of door = $200 \times 80 + 414 = 16410 \text{ cm}^2$

Consider AOH to be a line of symmetry

In $\triangle AOD, AO = 39 \text{ cm}, \angle ADO = 90^{\circ}, OD = 15 \text{ cm}$ $AD^2 = 39^2 - 15^2$ AD = 36 cm $\sin \angle DAO = \frac{15}{39} = 0.395$ $\angle DOA = \pi - \frac{\pi}{2} - 0.395 = 1.966$

In $\triangle OEH, OE = 18 \text{ cm}, \angle OEH = 90^{\circ}, OH = 30 \text{ cm}$ $EH^{2} = 30^{2} - 18^{2}$ EH = 24 cm $\sin \angle EHO = \frac{18}{30} = 0.644$ $\angle EOH = \frac{\pi}{2} - 0.644 = 0.927$

We need to determine the arc lengths from each of the three wheels.

The angle subtended by the belt on the 2 cm wheel, above the symmetry line,

$$\pi - \frac{\pi}{2} - 0.644 = 0.927$$

Length of belt in contact, above line AOH= $2 \times 0.927 = 1.85$ cm

The angle subtended by the belt on the 5 cm wheel, above the symmetry line = 1.176

Length of belt in contact, above line AOH = $1.176 \times 5 = 5.88$ cm

The angle subtended by the belt on the 20 cm wheel, above line AOH, $\pi - 1.176 - 0.927 = 1.039$

The length of the belt in contact, above line AOH = $1.039 \times 20 = 20.77$ cm

The length of belt in the top half = 5.88 + 36 + 20.77 + 24 + 1.85 = 88.5 cm

Total belt length $88.5 \times 2 = 177 \text{ cm}$

© Cengage Learning Australia Pty Ltd 2018

а

$$A = \frac{1}{2}r^{2}\theta = 10$$
$$P = r\theta + 2r = 14 \implies r = \frac{14}{\theta + 2}$$

Substitution for r in the area equation produces

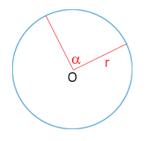
$$\frac{1}{2} \left(\frac{14}{\theta + 2} \right)^2 \theta = 10$$

By classpad, or as shown below, $\theta = 0.8$ or 5

$$\frac{196\theta}{\theta^2 + 4\theta + 4} = 20$$

$$196\theta = 20(\theta^2 + 4\theta + 4)$$

$$20\theta - 116\theta + 80 = 0$$


$$4(\theta - 5)(5\theta - 4) = 0$$

$$\theta = 5 \text{ or } \theta = 0.8$$

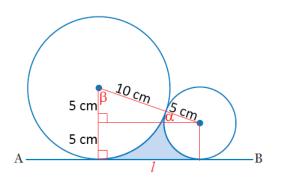
If the sector is minor, $\theta < \pi$. we can disregard $\theta = 5$ as a solution.

GIven
$$\theta = 0.8$$
, $r = \frac{14}{0.8 + 2} = 5$.
The radius of the circle is 5 cm.

b A major sector has $\theta > \pi$, so from the previous question $\theta = 5$ which produces r = 2 cm

$$\sin \alpha = \frac{5}{15}$$
$$\alpha = 0.34$$
$$\beta = \frac{\pi}{2} - 0.34 = 1.23$$

Distance between vertical radii: $l^2 = 15^2 - 5^2$


$$l = \sqrt{200} = 10\sqrt{2}$$

Area enclosed by trapezium: $\frac{1}{2}(10+5) \times 10\sqrt{2} = 75\sqrt{2}$

Area of small sector: $\frac{1}{2} \times 5^2 \times (0.34 + \frac{\pi}{2}) = 23.9$

Area of large sector: $\frac{1}{2} \times 10^2 \times 1.23 = 61.5$

Shaded area: $75\sqrt{2} - 23.9 - 61.5 = 20.7 \, \text{cm}^2$

$$\cos \angle BAC = \frac{7^2 + 6^2 - 5^2}{2 \times 7 \times 6} \qquad \cos \angle ABC = \frac{7^2 + 5^2 - 6^2}{2 \times 7 \times 5}$$

$$\angle BAC = 0.775 \qquad \angle ABC = 0.997$$

$$\therefore \angle ACB = \pi - 0.775 - 0.997$$

$$= 1.370$$

Area of triangle ABC : $0.5 \times 7 \times 6 \times \sin 0.775 = 14.69$

Area of sector in circle centre A (shaded blue): $0.5 \times 4^2 \times 0.775 = 6.20$

Area of sector in circle centre B (shaded yellow): $0.5 \times 3^2 \times 0.997 = 4.49$

Area of sector in circle centre C (shaded green): $0.5 \times 2^2 \times 1.370 = 2.74$

Area of triangle outside of circle (shaded pink): 14.69 - (6.20 + 4.49 + 2.74) = 1.26

Percentage of triangle : $\frac{1.26}{14.69} \times 100\% = 8.6\%$

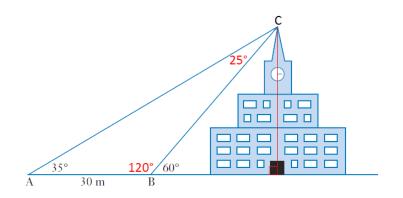
a
$$(x+3)(2x-1) = 2x^2 - x + 6x - 3$$

 $= 2x^2 + 5x - 3$
b $(x+7)(3x-4) = 3x^2 - 4x + 21x - 28$
 $= 3x^2 + 17x - 28$
c $(x+5)(x-1)(x+3) = (x+5)(x^2 + 2x - 3)$
 $= x^3 + 2x^2 - 3x + 5x^2 + 10x - 15$
 $= x^3 + 7x^2 + 7x - 15$
d $(2x+1)(x-3)(x-2) = (x-2)(2x^2 - 5x - 3)$

$$= 2x^{3} - 5x^{2} - 3x - 4x^{2} + 10x + 6$$
$$= 2x^{3} - 9x^{2} + 7x + 6$$

Question 2

a $\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ **b** $\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}$ **c** $\frac{5}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{5\sqrt{2}}{2}$ **d** $\frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{6\sqrt{3}}{3} = 2\sqrt{3}$ **e** $\frac{1}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}} = \frac{3-\sqrt{5}}{9-5}$ $= \frac{3-\sqrt{5}}{4}$


f
$$\frac{1}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}} = \frac{3+\sqrt{2}}{9-2}$$

 $= \frac{3+\sqrt{2}}{7}$

$$g \qquad \frac{2}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}} = \frac{2(1-\sqrt{5})}{1-5}$$
$$= \frac{2(1-\sqrt{5})}{-4}$$
$$= \frac{\sqrt{5}-1}{2}$$

h
$$\frac{3}{\sqrt{5} + \sqrt{2}} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}} = \frac{3(\sqrt{5} - \sqrt{2})}{5 - 2}$$
$$= \frac{3(\sqrt{5} - \sqrt{2})}{3}$$
$$= \sqrt{5} - \sqrt{2}$$

In
$$\triangle ABC$$

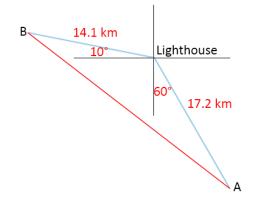
$$\frac{\sin 25^{\circ}}{30} = \frac{\sin 35^{\circ}}{BC}$$
$$BC = \frac{30 \sin 35^{\circ}}{\sin 25^{\circ}}$$
$$= 40.7$$

 $\sin 60^\circ = \frac{h}{40.7}$ $h = 40.7 \times \sin 60^\circ$ = 35 m (nearest m)

a 1 revolution in 5 seconds

$$\Rightarrow \frac{2\pi}{5} \text{ in 1 second}$$
$$l = r\theta$$
$$= 1.8 \times \frac{2\pi}{5}$$
$$= 2.26 \text{ m}$$
$$l = r\theta$$

$$=\frac{2\pi}{5} \times 1$$
$$= 1.26 \,\mathrm{m}$$


Question 5

b

 $AB^{2} = 14.1^{2} + 17.2^{2} - 2 \times 14.1 \times 17.2 \times \cos 160^{\circ}$ AB = 30.8 km

 $\frac{\sin \angle BAL}{14.1} = \frac{\sin 160^{\circ}}{30.8}$ $\angle BAL = 9^{\circ}$

B is 30.8 km from A on a bearing of N 69° W

Area of $\triangle BCD = 0.5 \times 73.2 \times 87.8 \times \sin 67^{\circ}$ = 2958 m² BD² = 73.2² + 87.8² - 2 × 73.2 × 87.8 × cos 67° BD = 89.7 m $\frac{\sin 82^{\circ}}{89.7} = \frac{\sin \angle ADB}{67.2}$ $\angle ADB = 48^{\circ}$ $\angle ABD = 50^{\circ}$ $\frac{\sin 50^{\circ}}{AD} = \frac{\sin 82^{\circ}}{89.7}$ AD = 69.4 m \therefore Area $\triangle ABD$ = $0.5 \times 67.2 \times 69.4 \times \sin 82^{\circ}$ = 2309 m² Total area = 2958+2309 = 5267 m² Total Perimeter = 73.2 + 87.8 + 67.2 + 69.4 = 297.6 m